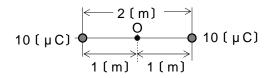
AK • XK 003

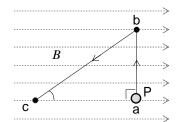

第一級総合無線通信士 第一級海上無線通信士 第一級海上無線通信士

25問 2時間30分

A - 1 図に示すように、真空中に 10 [μ C] の二つの点電荷が 2 [m] 離れて置かれているとき、点電荷を結ぶ直線上の中間点 O の電界の強さ及び電位の値として、正しいものを下の番号から選べ。

ただし、真空の誘電率を ₀としたとき、1/(4 ₀)= **§**10⁹ [m/F]とする。

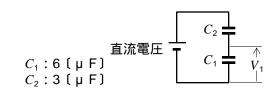
電界の強さ 電位
1 0 [V/m] 180kV]
2 0 [V/m] 0 [V]
3 90 [V/m] 180[kV]
4 180[V/m] 0 [V]
5 180[V/m] 180[kV]

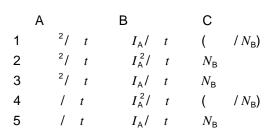

A - 2 図に示すように、磁束密度 B が 0.2 [T] の磁界中を直線導体 P が、a を始点として a b c へと 5 [m/s] の速さで 移動した。このときの ab 間及び bc 間で P に生ずる起電力の値の組合せとして、正しいものを下の番号から選べ。ただ心は 紙面に平行であり、P は長さが 1 [m] で常に紙面に対して垂直を保ち移動するものとする。

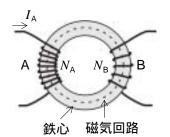
ab 間 bc 間 $1 \ 1 \ V$ $\sqrt{3}/2 \ V$ $2 \ 1 \ V$ $0.5 \ V$ $3 \ 1 \ V$ $1/\sqrt{2} \ V$ $4 \ 2 \ V$ $0.5 \ V$ $3/2 \ V$

B

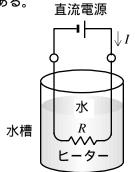
= /6 [rad]

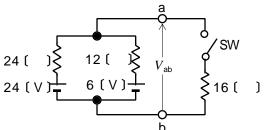

ab は B に対して直角の方向


A - 3 図に示す回路において、二つの静電容量 C_1 及び C_2 に蓄えられる静電エネルギーの総和が 36 $[\mu]$ であるときの C_1 の両端の電圧 V_1 の値として、正しいものを下の番号から選べ。

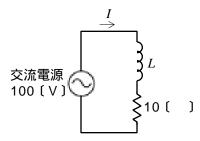

1 0.5 (V) 2 1 (V) 3 2 (V) 4 3.5 (V)

5 6 (V)


- A 4 次の記述は、図に示すような鉄心に巻かれたコイル A 及び B 間の相互インダクタン $\mathbf A$ について述べたものである。 内に入れるべき字句の正しい組合せを下の番号から選べ。ただし、 A 及び B の巻数をそれぞ $\mathbf A$ 及び $\mathbf A$ 及び $\mathbf A$ 及び $\mathbf A$ あるなる。 漏れ磁束及び磁気飽和は無いものとする。
 - (1) A に流れる直流電流が時間 t [s] 間に I_A [A] 変化したとき、鉄心内の磁束が [Wb] 変化したとすると、B に生ずる起電力の大きさ e_B は、 $e_B = N_B$ $[Mathbb{N}]$ [V] である。
 - (2) また、 e_B をMを用いて表すと、 e_B =M(\square B)(V)である。
 - (3) したがって、(1)及び(2)より M は、M = \mathbb{C} / I_A [H] である。

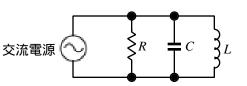

- A 5次の記述は、図に示すように R []のヒーター(抵抗)を水槽内に入れて直流電流 I [A] を t [s] 間流したときの水温の上昇について述べたものである。 内に入れるべき字句の正しい組合せを下の番号から選べ。ただし、ヒーターで発生する熱は全て水に吸収され外部に逃げないものとする。また、熱量は 1 [cal] = 4.2 [J] とする。
 - (1) ヒーターが t [s] 間に発生する熱量は、A [J] である。
 - (2) 水の温度を 1 []上昇させるのに必要な熱量は、水の量を M [cm 3] とすると、 $\boxed{\mathsf{B}}$ [J] である。
 - (3) したがって、水槽内の水の温度の上昇は、
 C
 〔 〕である。

	Α	В	С
1	I^2Rt	M/4.2	$4.2I^2Rt/M$
2	I^2Rt	4.2M	$I^2Rt/(4.2M)$
3	I^2Rt	4.2M	$4.2I^2Rt/M$
4	I^2Rt^2	4.2M	$I^2Rt/(4.2M)$
5	I^2Rt^2	M/4.2	$4.2I^2Rt/M$

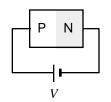

A - 6 図に示す回路において、スイッチ SW を断(OFF)及び接(ON)にしたときの端子 ab 間の電 $\mathbf{E}_{\!\!\!a}$ の値の組合せとして、正しいものを下の番号から選べ。

	OFF	ON
1	15 (V)	6 (V)
2	15 (V)	8 (V)
3	12 (V)	6 (V)
4	12 (V)	8 (V)
5	12 (V)	4 (V)

A - 7 図に示す交流回路において、回路に流れる電流 I の値が 8 [A] であるとき、回路の消費電力 P 及び力率 \cos の値の組合せとして、正しいものを下の番号から選べ。


	P	cos
1	640 (W)	0.8
2	640 (W)	0.6
3	720 (W)	8.0
4	800 (W)	0.6
5	800 (W)	8.0

- A-8 図に示す抵抗 R、自己インダクタンス L 及び静電容量 C の並列共振回路の尖鋭度 Q の値として、正しいものを下の番号から選べ。
 - 1 5 2 10 3 20 4 25


5 50

R = 5 (k) $C = 0.01 (\mu F)$ L = 0. (mH)

- A 9 次の記述は、半導体の PN 接合について述べたものである。 内に入れるべき字句の正しい組合せを下の番号から選べ。 ただし、同じ記号の 内には、同じ字句が入るものとする。
 - (1) PN 接合の接合面付近には、キャリアの無い領域ができる。この領域を A という。
 - (2) A の内部には、 B に向かう方向の内部電界が生ずる。
 - (3) 図に示すように PN 接合に外から電圧/を加えると、内部電界が C められて電流が流れやすくなる。

	Α	В	С
1	逆転層	NからP	弱
2	逆転層	P からN	強
3	空乏層	Nから P	強
4	空乏層	P からN	強
5	空乏層	Nから P	弱

A - 10 次の記述は、図に示すエミッタ接地トランジスタの h 定数について述べたものである。 _____内に入れるべき字句の正しい組 合せを下の番号から選べ。ただし、はそれぞれの電圧及び電流の変化分を表す。 $I_{\rm C}/I_{\rm B}$ は、記号Aで表される。 $V_{\rm BE}/I_{\rm B}$ は、Bと呼ばれる。 (2) (3) 記号 h_{re} で表す定数は、C で定義される。 Α V_{CE} : コレクタ-エミッタ間電圧〔V〕 相互コンダクタンス 1 h_{ie} $V_{\rm CE}$ / $I_{\rm C}$ $I_{\rm C}$:コレクタ電流〔A〕 $V_{\rm BE}$ / $V_{\rm CE}$ 入力インピーダンス $2 h_{ie}$ V_{BE} :ベース-エミッタ間電圧〔V〕 $3 h_{ie}$ $V_{\rm BE}$ / $V_{\rm CE}$ 相互コンダクタンス *I*_B:ベース電流〔A〕 4 h_{fe} 入力インピーダンス $V_{\rm BE}$ / $V_{\rm CE}$ 相互コンダクタンス 5 h_{fe} $V_{\rm CE}$ / $I_{\rm C}$ A-11 次の記述は、図に示す等価回路を用いた電界効果トランジスタ(FET)のソース接地増幅回路について述べたものである。 内に入れるべき字句の正しい組合せを下の番号から選べ。 (1) $g_m[S]$ は、 A コンダクタンスである。 (2) ドレイン抵抗 $r_{\rm d}$ [] は、一般に、非常に \Box B 。 (3) r_d R_L のとき、回路の電圧増幅度の大きさ A は、 $A = |V_{ds}/V_{qs}| = g_m \times$ C である。 FET G Α В С 1 相互 大きい 2 相互 小さい V_{as}: GS 間電圧 (入力電圧)〔 V〕 3 相互 大きい V_{ds} : DS 間電圧 (出力電圧)〔 V 〕 I_d :ドレイン電流〔A〕 S 4 出力 小さい $r_{\sf d}$ **R**_: 負荷抵抗〔 〕 D: ドレイン G: ゲート S: ソース 5 出力 大きい A - 12 次の記述は、光に関係するダイオードについて述べたものである。このうち誤っているものを下の番号から選べ。 1 ホトダイオードは、右に示す図記号で表す。 2 ホトダイオードは、光を電気に変換する素子として用いる。 3 ホトダイオードは、通常 PN 接合に逆方向電圧を加えて用いる。 4 発光ダイオードは、逆方向電流が流れたときに発光する。 5 発光ダイオードは、可視光線以外の光を発光するものがある。 A - 13 次の記述は、図 1 に示す、トランジスタ(T) 増幅回路について述べたものである。 _____内に入れるべき字句の正しい組合 せを下の番号から選べ。ただし、コレクタ-エミッタ間のバイアス電圧 V_{CE} は、3〔V〕とする。また、静電容量 C_1 、 C_2 及び Trの出力アドミタンス hoeの影響は無視するものとする。 (1) 入力信号が無いときのコレクタ電流 I_c は、 I_c = $_$ A $_$ [mA $_$]である。 $I_{\rm C}$ (mA) (2) 直流負荷線は、図2 の B である。 (3) 交流負荷抵抗の値は、 C [k] である。 8 2 (k 6 Α В C 抵抗≤ 1 4 ア 2 2 4 **T**8(V) 2 3 2.5 ア 1

4 2.5

5 2.5

1

1

k

図 1

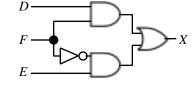
 $6~V_{
m CE}$ 8

(V)

2

図 2

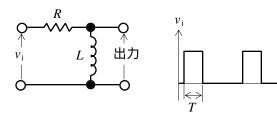
- A 14 次の記述は、図に示す発振回路の原理的な構成図について述べたものである。 _____ 内に入れるべき字句の正しい組合せを下 の番号から選べ。ただし、増幅回路の増幅度の大きさを A、帰還回路の帰還率の大きさを とする。
 - (1) 回路が発振を始めるにはA は、A なければならない。
 - (2) 回路が定常の発振状態にあるとき A は、B である。
 - (3) 増幅回路が逆相増幅回路のとき、 \dot{v}_1 と \dot{v}_2 の位相差は、 \square [rad] である。


С Α В 1 1 より大きく 2 1 より大きく 3 1 より大きく 4 1 より小さく 1

5 1 より小さく

発振回路 增幅回路 〇出力 帰還回路

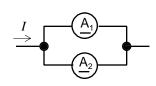
 \dot{V}_1 : 帰還回路の入力電圧 \dot{V}_2 : 帰還回路の出力電圧


- A 15 次の記述は、図に示す論理回路について述べたものである。 内に入れるべき字句の正しい組合せを下の番号から選べ。 ただし、D、E 及び F を入力、X を出力とする。
 - (1) X を表す論理式は、X = A である。
 - (2) したがって、F = 0 のと $\Rightarrow = B$ であり、F = 1 のと $\Rightarrow = C$ である。

С В 1 $D \cdot F + E \cdot \overline{F}$ 2 $D \cdot F + E \cdot \overline{F}$ D E3 $(D \cdot F) + E \cdot F$ E D4 $(D+F) \cdot (E+\overline{F})$ D E 5 $(D+F) \cdot (E+\overline{F})$ E D

A - 16 図に示す 回路が、微分回路として動作するための抵抗 R 及び自己インダクタンス L の値の組合せとして、適切なものを下の 番号から選べ。ただし、入力電圧 v_i のパルス波のパルス幅Tを 0.1 [ms] とする。

L1 100 [] 100 [mH] 2 100 [] 10 [mH] 3 1,000 () 100 (mH) 4 1,000 () 50 (mH) 5 1,000 () 1 (mH)


A-17 図に示すように、表に示した二つの直流電流計 A_1 及び A_2 を並列に接続したとき、指示値の和で測定できる電流 I の最大値と して、正しいものを下の番号から選べ。

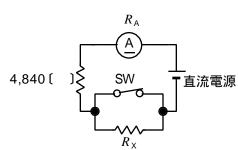
1 40 (mA) 2 45 (mA)

3 50 (mA)

4 55 (mA)

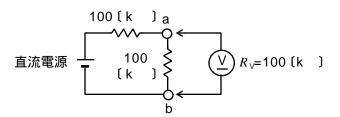
5 60 (mA)

電流計	最大目盛値	内部抵抗	
A ₁	30 (mA)	3 ()	
A ₂	30 (mA)	2 []	

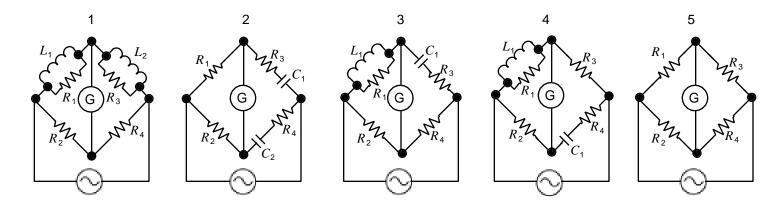

A-18 図に示す回路において、スイッチ SW を接(ON)にしたとき、可動コイル形直流電流計 A が最大目盛値〔A〕を指示し、次 に SW を断(OFF)にしたとき A $\dot{M}/4$ [A]を指示した。このとき抵抗 R_{x} の値として、正しいものを下の番号から選べ。ただ し、A の内部抵抗Aを 160 [] とする。

1 7,500 ()

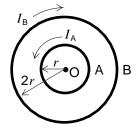
2 10,000 () 3 12,500 ()

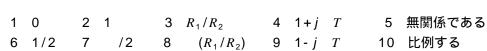

4 15,000 ()

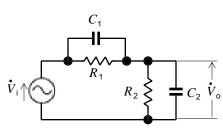
5 17,500 ()



時間


- A 19 図に示す回路において、端子 a b 間の電圧を内部抵航が 100 [k] の直流電圧計 V で測定した。このときの百分率誤差の値として、最も近いものを下の番号から選べ。ただし、誤差は R_{V} によってのみ生ずるものとする。
 - 1 50 (%)
 - 2 33.3 (%)
 - 3 25 (%)
 - 4 16.7 (%)
 - 5 12 (%)

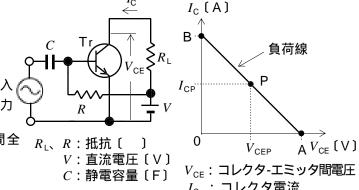

A - 20 次に示す交流ブリッジ回路のうち、平衡のとれない回路を下の番号から選べ。ただし、抵抗 R_1 、 R_2 、 R_3 、 R_4 []、自己インダクタンス L_1 、 L_2 [H] 及び静電容量 C_1 、 C_2 [F] は有限の値を持つものとする。



- B 1 次の記述は、図に示すように、半径がそれぞれ r [m] 及び 2r [m] の二つの円形コイル A 及び B の中心 O を重ねて紙面上に置き、それぞれに方向が逆向きの直流電流 I_A [A] 及び I_B [A] を流したときの磁界について述べたものである。 内に入れるべき字句を下の番号から選べ。
 - (1) 電流の流れている導線の周囲に生ずる磁界の方向は、アンペアの アーねじの法則で求められる。
 - (2) A によって、O に生ずる磁界の方向は、紙面の イ の方向である。
 - (3) B によって、O に生ずる磁 \mathbf{R} の方向は、 $H_{\mathbf{A}}$ の方向と反対の方向である。
 - (4) H_{A} の強さは、 $\boxed{\hspace{1em} \circlearrowleft}$ $[\hspace{1em} A/m \hspace{1em}]$ であり、 H_{B} の強さは、 $\boxed{\hspace{1em} \bot \hspace{1em}}$ $[\hspace{1em} A/m \hspace{1em}]$ である。

- 1 右 2 表から裏 3 $I_A/(2r)$ 4 $I_B/(4r)$ 5 $I_A/(2r)$
- 6 左 7 裏から表 8 I_B/(4 r) 9 2 10 4
- B 2次の記述は、図に示す回路の入力電圧 \dot{V}_i [V] と出力電圧 \dot{V}_o [V] の関係について述べたものである。 内に入れるべき字句を下の番号から選べ。ただし、同じ記号の 内には、同じ字句が入るものとする。また、抵抗 R_1 、 R_2 [] と静電容量 C_1 、 C_2 [F] との間には、 R_1C_1 = R_2C_2 = T [s] の関係があるものとする。
 - (1) C_1 と R_1 の並列合成インピーダンス \dot{Z}_1 及び C_2 と R_2 の並列合成インピーダンス \dot{Z}_2 は、それぞれ次式で表される。
 - $\dot{Z}_1 = R_1 / (\boxed{\mathcal{P}}) (\boxed{})$ $\dot{Z}_2 = R_2 / (\boxed{\mathcal{P}}) (\boxed{})$
 - (2) \dot{V}_i/\dot{V}_o を \dot{Z}_1 及び \dot{Z}_2 で表すと、次式で表される。 $\dot{V}_i/\dot{V}_o = \boxed{ 1 + \dot{Z}_1/\dot{Z}_2}$
 - (3) 式 及び を用いて式 を整理すると、次式が得られる。 $\dot{v}_{_{i}}/\dot{v}_{_{o}}$ = $\boxed{}$ + $\boxed{}$ ウ
 - (4) よって、 $\dot{V}_{\rm i}/\dot{V}_{\rm o}$ は、 に \Box

:角周波数〔rad/s〕


- B 3 次の記述は、マイクロ波電子管について述べたものである。このうち、正しいものを 1、誤っているものを 2 として解答せよ。
 - アマグネトロンは、二極管である。
 - イ マグネトロンは、電界と磁界の作用で電子流を制御する。
 - ウマグネトロンは、周波数変調が容易である。
 - エ 進行波管には、遅延回路がない。
 - オ 進行波管には、発振周波数を決める固有の共振回路がない。
- B 4次の記述は、図1 に示すトランジスタ (m)を用いた A 級増幅回路の動作について述べたものである。 内に入れるべき字 句を下の番号から選べ。ただし、図 2 は、負荷線と動作点 P を示したものである。また、入力は正弦波交流で、回路は理想的な A 級動作とする。

- (2) 負荷線の点 B の電流は、 イ [A] である。
- (3) 負荷線の傾きは、 ウ [S] である。
- (4) P のコレクタ-エミッタ間電圧/_{CEP} は、V/2〔V〕であり、 コレクタ電流 I_{CP} は、 $\boxed{\hspace{1.5cm}}$ $\boxed{\hspace{1.5cm}}$
- (5) $R_{ t L}$ で消費される交流最大出力電力 $P_{ t om}$ は、負荷線上のAB 間全 $R_{ t L}$ 、R:抵抗〔 体を V_{CE} と I_C が変化するときに得られるから、次式で表される。

8 $2V/R_{\perp}$ 9 $V/(2R_{\perp})$ 10 $V^2/(2R_{\perp})$

*I*_C : コレクタ電流 図 2

- B 5次の記述は、図 1 に示す回路による負荷の消費電力の測定(三電流計法)について述べたものである。 内に入れるべき字 句を下の番号から選べ。ただし、同じ記号の _____内には、同じ字句が入るものとする。また、三つの電流計 A_1 、 A_2 及び A_3 の 指示値をそれぞれ I_1 [A]、 I_2 [A] 及び I_3 [A] とし、負荷の力率を \cos としたときの交流電源電圧 \dot{V} [V] と各電流 \dot{I}_1 、 \dot{I}_2 及 \vec{U}_3 のベクトル図を図 2 に示す。
 - (1) 負荷で消費される電力 P は、次式で表される。

$$P = |\dot{V}| \times |\dot{I}_2| \times \cos \quad (W)$$

- (2) $|\dot{V}|=$ ア [V]、 $|\dot{I}_2|=I_2$ [A]であるから、式 は次式で表される。 $P = \boxed{\mathcal{P}} \times I_2 \times \cos \quad (W)$
- (3) I_1 、 I_2 及び I_3 の間には、図2より次式が成り立つ。

$$I_1^2 = \overline{(\text{oda}ab)^2} + \overline{(\text{b})^2}$$

$$= I_2 \times \overline{1} + I_3^2 + I_2 \sin ^2$$

$$= \overline{1} + 2I_2 I_3 \cos$$

(4) 式 より次式が得られる。

6 2V 7 -1/ R_{L}

$$I_2I_3\cos = (\boxed{\bot})/2$$

(5) 式 を式 を用いて整理すると、次式が得られる。

1 2R 2
$$I_3R$$
 3 $I_2^2 + I_3^2$ 4 $I_1^2 - I_2^2 + I_3^2$ 5 cos 6 $R/2$ 7 I_1R 8 $I_2^2 - I_3^2$ 9 $I_1^2 - I_2^2 - I_3^2$ 10 sin

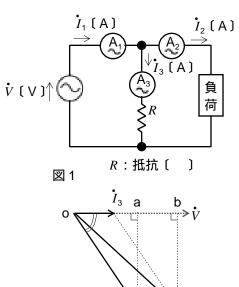


図 2